论文标题

自行车相互作用的生成对抗网络,用于强大无监督的低光增强

Cycle-Interactive Generative Adversarial Network for Robust Unsupervised Low-Light Enhancement

论文作者

Ni, Zhangkai, Yang, Wenhan, Wang, Hanli, Wang, Shiqi, Ma, Lin, Kwong, Sam

论文摘要

摆脱拟合配对训练数据的基本限制,最近无监督的低光增强方法在调整图像的照明和对比度方面出色。但是,对于无监督的低光增强,由于缺乏对详细信号的监督而导致的剩余噪声抑制问题在很大程度上阻碍了这些方法在现实世界应用中的广泛部署。在此,我们提出了一种新型的自行车交互生成对抗网络(CIGAN),以实现无监督的低光图像增强功能,它不仅能够更好地在低/正常光图像之间更好地传输照明分布,还可以在两个域之间操纵详细信号,例如,抑制/合成cy cy cy cy cy cyclact/degract/degrad noceration noceration nocal noceration nocection/degract。尤其是,提出的低光引导转换进料往前是从增强gan(Egan)发电机到降解gan(dgan)的发电机的低光图像的特征。借助真正弱光图像的信息,DGAN可以在低光图像中综合更现实的不同照明和对比度。此外,DGAN中的特征随机扰动模块学会了增加特征随机性以产生各种特征分布,从而说服了合成的低光图像以包含逼真的噪声。广泛的实验既证明了所提出的方法的优越性,又证明了每个模块在CIGAN中的有效性。

Getting rid of the fundamental limitations in fitting to the paired training data, recent unsupervised low-light enhancement methods excel in adjusting illumination and contrast of images. However, for unsupervised low light enhancement, the remaining noise suppression issue due to the lacking of supervision of detailed signal largely impedes the wide deployment of these methods in real-world applications. Herein, we propose a novel Cycle-Interactive Generative Adversarial Network (CIGAN) for unsupervised low-light image enhancement, which is capable of not only better transferring illumination distributions between low/normal-light images but also manipulating detailed signals between two domains, e.g., suppressing/synthesizing realistic noise in the cyclic enhancement/degradation process. In particular, the proposed low-light guided transformation feed-forwards the features of low-light images from the generator of enhancement GAN (eGAN) into the generator of degradation GAN (dGAN). With the learned information of real low-light images, dGAN can synthesize more realistic diverse illumination and contrast in low-light images. Moreover, the feature randomized perturbation module in dGAN learns to increase the feature randomness to produce diverse feature distributions, persuading the synthesized low-light images to contain realistic noise. Extensive experiments demonstrate both the superiority of the proposed method and the effectiveness of each module in CIGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源