论文标题

在部分观察到的环境中的无线通道预测

Wireless Channel Prediction in Partially Observed Environments

论文作者

Yin, Mingsheng, Hu, Yaqi, Azzino, Tommy, Kang, Seongjoon, Mezzavilla, Marco, Rangan, Sundeep

论文摘要

位点特异性射频(RF)传播预测越来越依赖于由相机和激光传感器等视觉数据构建的模型。在动态设置中运行时,只能部分观察到环境。本文介绍了一种提取统计通道模型的方法,鉴于对周围环境的部分观察。我们提出了一种简单的启发式算法,该算法在部分环境上执行射线跟踪,然后使用机器学习训练的预测指标来估算从部分射线跟踪结果中提取的功能中估算该通道及其不确定性。结果表明,当没有部分信息可用并完全观察到环境时,提出的方法可以在完全统计模型之间插值。该方法还可以根据已探索的区域数量来捕获传播预测的不确定性程度。在一组室内地图上模拟的机器人导航应用程序中,该方法将使用最新的导航,同时定位和映射(SLAM)和计算机视觉方法构建的机器人导航应用程序。

Site-specific radio frequency (RF) propagation prediction increasingly relies on models built from visual data such as cameras and LIDAR sensors. When operating in dynamic settings, the environment may only be partially observed. This paper introduces a method to extract statistical channel models, given partial observations of the surrounding environment. We propose a simple heuristic algorithm that performs ray tracing on the partial environment and then uses machine-learning trained predictors to estimate the channel and its uncertainty from features extracted from the partial ray tracing results. It is shown that the proposed method can interpolate between fully statistical models when no partial information is available and fully deterministic models when the environment is completely observed. The method can also capture the degree of uncertainty of the propagation predictions depending on the amount of region that has been explored. The methodology is demonstrated in a robotic navigation application simulated on a set of indoor maps with detailed models constructed using state-of-the-art navigation, simultaneous localization and mapping (SLAM), and computer vision methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源