论文标题

用船长CCD进行暗物质检测

Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection

论文作者

Norcini, D., Castello-Mor, N., Baxter, D., Corso, N. J., Cuevas-Zepeda, J., De Dominicis, C., Matalon, A., Munagavalasa, S., Paul, S., Privitera, P., Ramanathan, K., Smida, R., Thomas, R., Yajur, R., Chavarria, A. E., McGuire, K., Mitra, P., Piers, A., Settimo, M., Gutierrez, J. Cortabitarte, Duarte-Campderros, J., Lantero-Barreda, A., Lopez-Virto, A., Vila, I., Vilar, R., Avalos, N., Bertou, X., Dastgheibi-Fard, A., Deligny, O., Estrada, E., Gadloa, N., Gaior, R., Hossbach, T., Khalil, L., Kilminster, B., Lawson, I., Lee, S., Letessier-Selvon, A., Loaiza, P., Papadopoulos, G., Robmann, P., Traina, M., Warot, G., Zopounidis, J-P.

论文摘要

旨在通过粒子后坐力直接检测暗物质的实验可以实现$ \ mathcal {o}(1 \,\ Mathrm {ev})$的能量阈值。在这个制度中,来自环境$γ$ - 砂的小角康普顿的电离信号构成了重要的背景。用于构建背景模型的蒙特卡洛模拟尚未在这些低能量下进行实验验证。我们报告了硅原子壳电子上康普顿散射的精确度量,低至23 $ \,$ eV。用于DAMIC-M实验开发的具有单电子分辨率的船长电荷耦合设备(CCD)在几个月内暴露于$^{241} $ AM $γ$ -Ray源。与硅k,l $ _ {1} $和l $ _ {2,3} $ - 外壳相关的功能清楚地识别出来,并首次在100 $ \,$ eV的低于100 $ \,$ ev中检测到Valence Electron的散射。我们发现,康普顿散射的相对论冲动近似是在直接检测实验中常用的蒙特卡洛模拟中实现的,并不会重现低于0.5 $ \,$ kev的测量光谱。这些数据与最初用于X射线吸收光谱开发的$ AB $ $ $ $ INITIO $计算是更好的一致性。

Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of $\mathcal{O}(1\,\mathrm{eV})$. In this regime, ionization signals from small-angle Compton scatters of environmental $γ$-rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23$\,$eV. A skipper charge-coupled device (CCD) with single-electron resolution, developed for the DAMIC-M experiment, was exposed to a $^{241}$Am $γ$-ray source over several months. Features associated with the silicon K, L$_{1}$, and L$_{2,3}$-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100$\,$eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5$\,$keV. The data are in better agreement with $ab$ $initio$ calculations originally developed for X-ray absorption spectroscopy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源