论文标题

在背包约束下的最大分区和额外分区

Sum-of-Max Partition under a Knapsack Constraint

论文作者

Jin, Kai, Zhang, Danna, Zhang, Canhui

论文摘要

序列分区问题在许多领域都出现,例如顺序数据分析,信息传输和并行计算。在本文中,我们研究以下分区问题变体:给定$ n $ $ 1,\ ldots,n $的顺序,其中每个项目$ i $与权重$ w_i $和另一个参数$ s_i $相关,将顺序分配为几个连续的子序列,每个子序列的总重量不超过threshold $ w_0 $ w_0 $ w_0 $ w_0 $ w_0 $ w_0 $ sar,最小化。 这个问题承认基于动态编程的简单解决方案,该解决方案的价格为$ O(n^2)$时间,可以将其提高到$ O(n \ log n)$时间。我们的贡献是$ o(n)$ time算法,这是不平淡但易于实施的。我们还研究了相应的树分区问题。我们证明了树上的问题是NP完整的,我们提出了一个$ O(W_0 N^2)$ time($ O(w_0^2n^2)$时间,分别为单位重量(分别为整数)情况。

Sequence partition problems arise in many fields, such as sequential data analysis, information transmission, and parallel computing. In this paper, we study the following partition problem variant: given a sequence of $n$ items $1,\ldots,n$, where each item $i$ is associated with weight $w_i$ and another parameter $s_i$, partition the sequence into several consecutive subsequences, so that the total weight of each subsequence is no more than a threshold $w_0$, and the sum of the largest $s_i$ in each subsequence is minimized. This problem admits a straightforward solution based on dynamic programming, which costs $O(n^2)$ time and can be improved to $O(n\log n)$ time easily. Our contribution is an $O(n)$ time algorithm, which is nontrivial yet easy to implement. We also study the corresponding tree partition problem. We prove that the problem on the tree is NP-complete and we present an $O(w_0 n^2)$ time ($O(w_0^2n^2)$ time, respectively) algorithm for the unit weight (integer weight, respectively) case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源