论文标题

稳定的摩尔斯流动树

Stable Morse flow trees

论文作者

Blakey, Kenneth

论文摘要

令$ l \ subset J^1M $为封闭的Legendrian,在封闭的歧管$ M $的1播空间中,具有简单的前奇异点。我们定义了摩尔斯流动树的自然概括,即稳定的流树。我们显示的结果类似于稳定地图的Gromov紧凑性 - 一系列具有均匀边缘的稳定流树的序列,具有一个子序列,该子序列将Floer-Gromov收敛到稳定的流动树。此外,我们意识到浮动的融合是稳定流树的某些模量空间的拓扑收敛。

Let $L\subset J^1M$ be a closed Legendrian, in the 1-jet space of a closed manifold $M$, with simple front singularities. We define a natural generalization of a Morse flow tree, namely, a stable flow tree. We show a result analogous to Gromov compactness for stable maps -- a sequence of stable flow trees, with a uniform edge bound, has a subsequence that Floer-Gromov converges to a stable flow tree. Moreover, we realize Floer-Gromov convergence as the topological convergence of a certain moduli space of stable flow trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源