论文标题

潜在指纹识别的配对关系建模

Pair-Relationship Modeling for Latent Fingerprint Recognition

论文作者

Zhu, Yanming, Yin, Xuefei, Jia, Xiuping, Hu, Jiankun

论文摘要

潜在的指纹对于识别犯罪嫌疑人很重要。但是,认识到参考指纹集中的潜在指纹仍然是一个挑战。现有方法的大多数(如果不是全部)将独立提取每个指纹的表示特征,然后比较这些表示特征在不同过程中识别的相似性。如果没有对特征提取过程的相似性的监督,则很难最佳地反映两种指纹的相似性,这是与决策做出匹配的基础的相似性。在本文中,我们提出了一种新方案,可以将两个指纹的配对关系建模为识别的相似性功能。配对关系是由混合深网建模的,该网络可以处理随机大小的困难和潜在指纹的损坏区域。两个数据库的实验结果表明,所提出的方法的表现优于最新技术。

Latent fingerprints are important for identifying criminal suspects. However, recognizing a latent fingerprint in a collection of reference fingerprints remains a challenge. Most, if not all, of existing methods would extract representation features of each fingerprint independently and then compare the similarity of these representation features for recognition in a different process. Without the supervision of similarity for the feature extraction process, the extracted representation features are hard to optimally reflect the similarity of the two compared fingerprints which is the base for matching decision making. In this paper, we propose a new scheme that can model the pair-relationship of two fingerprints directly as the similarity feature for recognition. The pair-relationship is modeled by a hybrid deep network which can handle the difficulties of random sizes and corrupted areas of latent fingerprints. Experimental results on two databases show that the proposed method outperforms the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源