论文标题
障碍辅助组装强度密切相关的光流体
Disorder-Assisted Assembly of Strongly Correlated Fluids of Light
论文作者
论文摘要
指导多体系统到所需的状态是现代量子科学的核心挑战,从量子计算到多体物理学和量子增强的计量学。解决此问题的方法包括逐步组装,储层工程以不可逆地向目标状态泵送,以及从已知的初始状态中的绝热进化。在这里,我们通过结合粒子组件和绝热制备,在玻色哈驼bard电路中构建低渗透量子流体。我们将单个光子注入一个无序的晶格中,在该晶格中,本征态已知和局部化,然后绝热地去除该疾病,从而使量子波动将光子融化成液体。使用我们的平台形式,我们首先通过构建和表征任意的单粒子箱状态,然后组装多粒子密切相关的流体来基准该晶格熔化技术。通过单点断层扫描执行的地点纠缠测量值表明流体中的颗粒会分离出来,而两体密度相关测量测量表明它们也彼此避免,揭示了tonks-girardeau气体的弗里德尔振荡特征。这项工作为制备合成物质的拓扑阶段和其他外来阶段开辟了新的可能性。
Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump towards a target state, and adiabatic evolution from a known initial state. Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice where the eigenstates are known & localized, then adiabatically remove this disorder, allowing quantum fluctuations to melt the photons into a fluid. Using our plat-form, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, while two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter.