论文标题

无序的异质宇宙:长度尺度上的星系分布和聚类

The Disordered Heterogeneous Universe: Galaxy Distribution and Clustering Across Length Scales

论文作者

Philcox, Oliver H. E., Torquato, Salvatore

论文摘要

对异质介质和星系宇宙学的无序研究共有一个共同的目标:分析“显微镜”处颗粒的分布,以预测“宏观,复合材料或整个宇宙”的“宏观”的物理特性。前者提供了一系列技术来表征广泛的微观结构。在这项工作中,我们将它们应用于星系的分布。我们专注于较低的相关函数,“ void”和“粒子”近端函数,配对连接函数,渗透属性和标量级指标。与均匀的泊松和典型的无序系统相比,由于存在准长范围的相关性,宇宙学模拟在最近的邻里功能中表现出增强的大规模聚类和更长的尾巴。在很大的尺度上,由于原始密度波动,该系统出现“超一样式”,而在最小的尺度上,系统几乎变为“防突磨损”,并且通过阶次指标被证明是高度相关的失调系统。通过有限的缩放分析,我们表明,星系目录的渗透阈值明显低于泊松实现。这与观察到的星系分布包含较大的空隙。但是,两组仿真共享一个分形维度,这意味着它们位于同一普遍性类别中。最后,我们考虑大规模聚类统计数据使用基于仿真的推断来限制宇宙参数的能力。最近的邻分布和成对连接功能都在宇宙学波动的幅度上大大拧紧了界限,相当于观察星系多25倍的水平。这些是三粒子相关性的有用替代方法,并且可以在大量缩短的时间内计算。 (简略)

Studies of disordered heterogeneous media and galaxy cosmology share a common goal: analyzing the distribution of particles at `microscales' to predict physical properties at `macroscales', whether for a liquid, composite material, or entire Universe. The former theory provides an array of techniques to characterize a wide class of microstructures; in this work, we apply them to the distributions of galaxies. We focus on the lower-order correlation functions, `void' and `particle' nearest-neighbor functions, pair-connectedness functions, percolation properties, and a scalar order metric. Compared to homogeneous Poisson and typical disordered systems, the cosmological simulations exhibit enhanced large-scale clustering and longer tails in the nearest-neighbor functions, due to the presence of quasi-long-range correlations. On large scales, the system appears `hyperuniform', due to primordial density fluctuations, whilst on the smallest scales, the system becomes almost `antihyperuniform', and, via the order metric, is shown to be a highly correlated disordered system. Via a finite scaling analysis, we show that the percolation threshold of the galaxy catalogs is significantly lower than for Poisson realizations; this is consistent with the observation that the galaxy distribution contains larger voids. However, the two sets of simulations share a fractal dimension, implying that they lie in the same universality class. Finally, we consider the ability of large-scale clustering statistics to constrain cosmological parameters using simulation-based inference. Both the nearest-neighbor distribution and pair-connectedness function considerably tighten bounds on the amplitude of cosmological fluctuations at a level equivalent to observing twenty-five times more galaxies. These are a useful alternative to the three-particle correlation, and are computable in much reduced time. (Abridged)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源