论文标题
基于高分辨率的人类姿势估计智能和安全机场的人群中基于视觉的冲突检测
Vision-based Conflict Detection within Crowds based on High-Resolution Human Pose Estimation for Smart and Safe Airport
论文作者
论文摘要
未来的机场变得越来越复杂,并且随着旅行者数量的增加而拥挤。尽管机场更有可能成为潜在冲突的热点,这可能会导致航班严重延误和几个安全问题。一种使安全监视更有效地检测冲突的智能算法将在其安全,财务和旅行效率方面为乘客带来许多好处。本文详细介绍了机器学习模型的开发,以对人群中的冲突行为进行分类。 HRNET用于分割图像,然后采用两种方法通过多个分类器对框架中的人的姿势进行分类。其中,发现支持向量机(SVM)达到了最出色的精度为94.37%。该模型不足的地方是反对模棱两可的行为,例如拥抱或失去框架中主题的轨道。如果进行改进以应对大量潜在的乘客,以及针对在机场环境中会出现的进一步歧义行为的培训,则最终的模型具有在机场内部署的潜力。反过来,将提供提高安全监视并提高机场安全性的能力。
Future airports are becoming more complex and congested with the increasing number of travellers. While the airports are more likely to become hotspots for potential conflicts to break out which can cause serious delays to flights and several safety issues. An intelligent algorithm which renders security surveillance more effective in detecting conflicts would bring many benefits to the passengers in terms of their safety, finance, and travelling efficiency. This paper details the development of a machine learning model to classify conflicting behaviour in a crowd. HRNet is used to segment the images and then two approaches are taken to classify the poses of people in the frame via multiple classifiers. Among them, it was found that the support vector machine (SVM) achieved the most performant achieving precision of 94.37%. Where the model falls short is against ambiguous behaviour such as a hug or losing track of a subject in the frame. The resulting model has potential for deployment within an airport if improvements are made to cope with the vast number of potential passengers in view as well as training against further ambiguous behaviours which will arise in an airport setting. In turn, will provide the capability to enhance security surveillance and improve airport safety.