论文标题
在线反思性学习,用于强大的医学图像细分
Online Reflective Learning for Robust Medical Image Segmentation
论文作者
论文摘要
当测试图像提出看不见的分布时,深度分割模型通常会面临故障风险。改善模型鲁棒性针对这些风险的鲁棒性对于深层模型的大规模临床应用至关重要。在这项研究中,受人类学习周期的启发,我们提出了一个新颖的在线反思学习框架(REFSEG),以改善细分鲁棒性。基于在行动中的反射概念,我们的refseg首先驱动深层模型采取行动以获得语义分割。然后,refseg触发模型以反映自身。因为使深层模型在测试过程中意识到他们的细分失败是具有挑战性的,所以RefSeg综合了从语义面具中构成现实的代理图像,以帮助深层模型构建直观有效的反思。该代理翻译并强调了分割缺陷。通过最大程度地提高原始输入和代理之间的结构相似性,可以改善分割鲁棒性的反射循环。 REFSEG在测试阶段运行,并且是分割模型的一般性。通过公共心脏MR数据集和两个内部大型超声数据集对三个医疗图像细分任务进行了广泛的验证,这表明我们的refseg显着提高了模型的鲁棒性,并报告了与强竞争对手相对于强大的竞争对手的最先进的表现。
Deep segmentation models often face the failure risks when the testing image presents unseen distributions. Improving model robustness against these risks is crucial for the large-scale clinical application of deep models. In this study, inspired by human learning cycle, we propose a novel online reflective learning framework (RefSeg) to improve segmentation robustness. Based on the reflection-on-action conception, our RefSeg firstly drives the deep model to take action to obtain semantic segmentation. Then, RefSeg triggers the model to reflect itself. Because making deep models realize their segmentation failures during testing is challenging, RefSeg synthesizes a realistic proxy image from the semantic mask to help deep models build intuitive and effective reflections. This proxy translates and emphasizes the segmentation flaws. By maximizing the structural similarity between the raw input and the proxy, the reflection-on-action loop is closed with segmentation robustness improved. RefSeg runs in the testing phase and is general for segmentation models. Extensive validation on three medical image segmentation tasks with a public cardiac MR dataset and two in-house large ultrasound datasets show that our RefSeg remarkably improves model robustness and reports state-of-the-art performance over strong competitors.