论文标题

无监督的高分辨率肖像目光校正和动画

Unsupervised High-Resolution Portrait Gaze Correction and Animation

论文作者

Zhang, Jichao, Chen, Jingjing, Tang, Hao, Sangineto, Enver, Wu, Peng, Yan, Yan, Sebe, Nicu, Wang, Wei

论文摘要

本文提出了一种凝视校正和动画方法,用于高分辨率,不受约束的肖像图像,可以在没有凝视角度和头部姿势注释的情况下对其进行训练。常见的凝视校正方法通常需要用精确的注视和头姿势信息对训练数据进行注释。使用无监督的方法解决此问题仍然是一个空旷的问题,尤其是对于野外高分辨率的面部图像,这并不容易用凝视和头部姿势标签注释。为了解决这个问题,我们首先创建了两个新的肖像数据集:Celebgaze和高分辨率Celebhqgaze。其次,我们将视线校正任务制定为图像介绍问题,使用视觉校正模块(GCM)和凝视动画模块(GAM)解决。此外,我们提出了一种无监督的训练策略,即训练的综合训练,以学习眼睛区域特征与凝视角度之间的相关性。结果,我们可以在此空间中使用学习的潜在空间进行凝视动画。此外,为了减轻培训和推理阶段中的记忆和计算成本,我们提出了一个与GCM和GAM集成的粗到精细模块(CFM)。广泛的实验验证了我们方法在野外低和高分辨率面部数据集中的视线校正和凝视动画任务方面的有效性,并证明了我们方法在艺术状态方面的优越性。代码可从https://github.com/zhangqianhui/gazeanimationv2获得。

This paper proposes a gaze correction and animation method for high-resolution, unconstrained portrait images, which can be trained without the gaze angle and the head pose annotations. Common gaze-correction methods usually require annotating training data with precise gaze, and head pose information. Solving this problem using an unsupervised method remains an open problem, especially for high-resolution face images in the wild, which are not easy to annotate with gaze and head pose labels. To address this issue, we first create two new portrait datasets: CelebGaze and high-resolution CelebHQGaze. Second, we formulate the gaze correction task as an image inpainting problem, addressed using a Gaze Correction Module (GCM) and a Gaze Animation Module (GAM). Moreover, we propose an unsupervised training strategy, i.e., Synthesis-As-Training, to learn the correlation between the eye region features and the gaze angle. As a result, we can use the learned latent space for gaze animation with semantic interpolation in this space. Moreover, to alleviate both the memory and the computational costs in the training and the inference stage, we propose a Coarse-to-Fine Module (CFM) integrated with GCM and GAM. Extensive experiments validate the effectiveness of our method for both the gaze correction and the gaze animation tasks in both low and high-resolution face datasets in the wild and demonstrate the superiority of our method with respect to the state of the arts. Code is available at https://github.com/zhangqianhui/GazeAnimationV2

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源