论文标题

动态人头编辑的神经参数化

Neural Parameterization for Dynamic Human Head Editing

论文作者

Ma, Li, Li, Xiaoyu, Liao, Jing, Wang, Xuan, Zhang, Qi, Wang, Jue, Sander, Pedro

论文摘要

隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态人头的准确细节,例如细面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来删除​​几何和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以显式和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及与时间相关的残差,以建模时间和视图变化。我们将我们的方法与几种重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。

Implicit radiance functions emerged as a powerful scene representation for reconstructing and rendering photo-realistic views of a 3D scene. These representations, however, suffer from poor editability. On the other hand, explicit representations such as polygonal meshes allow easy editing but are not as suitable for reconstructing accurate details in dynamic human heads, such as fine facial features, hair, teeth, and eyes. In this work, we present Neural Parameterization (NeP), a hybrid representation that provides the advantages of both implicit and explicit methods. NeP is capable of photo-realistic rendering while allowing fine-grained editing of the scene geometry and appearance. We first disentangle the geometry and appearance by parameterizing the 3D geometry into 2D texture space. We enable geometric editability by introducing an explicit linear deformation blending layer. The deformation is controlled by a set of sparse key points, which can be explicitly and intuitively displaced to edit the geometry. For appearance, we develop a hybrid 2D texture consisting of an explicit texture map for easy editing and implicit view and time-dependent residuals to model temporal and view variations. We compare our method to several reconstruction and editing baselines. The results show that the NeP achieves almost the same level of rendering accuracy while maintaining high editability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源