论文标题

研究屈曲对III二硝酸盐单层的电气和光学特性的屈曲作用

Study of the buckling effects on the electrical and optical properties of the group III-Nitride monolayers

论文作者

Abdullah, Nzar Rauf, Abdullah, Botan Jawdat, Rashid, Hunar Omar, Tang, Chi-Shung, Gudmundsson, Vidar

论文摘要

我们考虑使用第一原则计算的III二硝酸盐单层的电子和光学性质。 III组二硝酸盐单层具有平坦的六角形结构,其平面屈曲几乎为零,$δ$。通过调整$δ$,可以通过SP $^2 $^2 $ bong的强$σ\ text { - }σ$债券通过这些单层的扁平形式的杂交更改为更强的$σ\ text { - }π$ bonds sp $^$^$^$^$^3 $杂交。因此,由于$ s $ - $ p $ - 轨道向费米能源(Fermi Energy)的脱位,单层的频段间隙被调节。对于那些平坦的单层,带差距大于$ 1.0 $ eV的平坦单层的$δ$随着$δ$的增加而降低,而对于平面单层,没有明显的变化或频带间隙的平坦分散,频带隙小于$ 1.0 $ $ ev。减小的带隙会导致激发能的降低,因此静态介电函数,折射率和光导率增加。相比之下,III氮化物组中很少有单层的平坦带隙分散会导致静态介电函数,折射率和光导率的降低。因此,我们确认可以使用平面屈曲的调整来控制这些单层的物理特性,以增强和降低光学性质。这些结果对于在纳米级系统中设计光电设备的设计引起了人们的关注。

We consider electronic and optical properties of group III-Nitride monolayers using first-principle calculations. The group III-Nitride monolayers have flat hexagonal structures with almost zero planar buckling, $Δ$. By tuning the $Δ$, the strong $σ\text{-}σ$ bond through sp$^2$ hybridization of a flat form of these monolayers can be changed to a stronger $σ\text{-}π$ bond through sp$^3$ hybridization. Consequently, the band gaps of the monolayers are tuned due to a dislocation of the $s$- and $p$-orbitals towards the Fermi energy. The band gaps decrease with increasing $Δ$ for those flat monolayers, which have a band gap greater than $1.0$ eV, while no noticeable change or a flat dispersion of the band gap is seen for the flat monolayers, that have a band gap less than $1.0$ eV. The decreased band gap causes a decrease in the excitation energy, and thus the static dielectric function, refractive index, and the optical conductivity are increased. In contrast, the flat band gap dispersion of few monolayers in the group III-Nitride induces a reduction in the static dielectric function, the refractive index, and the optical conductivity. We therefore confirm that tuning of the planar buckling can be used to control the physical properties of these monolayers, both for an enhancement and a reduction of the optical properties. These results are of interest for the design of optoelectric devices in nanoscale systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源