论文标题
促进自然语言界面中的对话互动以进行可视化
Facilitating Conversational Interaction in Natural Language Interfaces for Visualization
论文作者
论文摘要
自然语言(NL)工具包可以使可视化开发人员(可能没有自然语言处理(NLP)背景)创建自然语言接口(NLIS),以使最终用户可以灵活地指定和与可视化交互。但是,这些工具包目前仅支持一次性话语,具有最小的功能,可以促进用户与系统之间的多转向对话框。具有这样的对话互动功能的NLI是一项艰巨的任务,需要实施低级NLP技术来处理新的查询,以便在较旧的查询中进行跟进。我们扩展了现有的基于Python的工具包NL4DV,该工具包处理了有关表格数据集的NL查询,并返回包含数据属性,分析任务和相关可视化的分析规范,以JSON对象建模。具体来说,NL4DV现在使开发人员能够促进有关数据集的多次同时对话并解决关联的歧义,从而将新的对话信息扩大到输出JSON对象中。我们通过三个示例演示了这些功能:(1)NLI学习Vega-Lite语法的各个方面,(2)一个思维映射应用程序以创建自由流动的对话,以及(3)聊天机器人回答问题并解决歧义。
Natural language (NL) toolkits enable visualization developers, who may not have a background in natural language processing (NLP), to create natural language interfaces (NLIs) for end-users to flexibly specify and interact with visualizations. However, these toolkits currently only support one-off utterances, with minimal capability to facilitate a multi-turn dialog between the user and the system. Developing NLIs with such conversational interaction capabilities remains a challenging task, requiring implementations of low-level NLP techniques to process a new query as an intent to follow-up on an older query. We extend an existing Python-based toolkit, NL4DV, that processes an NL query about a tabular dataset and returns an analytic specification containing data attributes, analytic tasks, and relevant visualizations, modeled as a JSON object. Specifically, NL4DV now enables developers to facilitate multiple simultaneous conversations about a dataset and resolve associated ambiguities, augmenting new conversational information into the output JSON object. We demonstrate these capabilities through three examples: (1) an NLI to learn aspects of the Vega-Lite grammar, (2) a mind mapping application to create free-flowing conversations, and (3) a chatbot to answer questions and resolve ambiguities.