论文标题
通过潜在贝叶斯优化方法优化各种自动编码器中的训练轨迹
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach
论文作者
论文摘要
由于它们在分离和复杂实验数据的分类和回归的能力,因此无监督和半监督的ML方法(如变异自动编码器(VAE))在物理,化学和材料科学方面已被广泛采用。像其他ML问题一样,VAE需要高参数调整,例如平衡Kullback Leibler(KL)和重建项。但是,训练过程以及由此产生的歧管拓扑和连通性不仅取决于超参数,还取决于训练期间的演变。由于在高维超参数空间中无法为昂贵的训练型号的详尽搜索效率低下,因此我们探索了一种潜在的贝叶斯优化方法(ZBO)方法,用于针对无人驾驶和半渗透的ML的超参数轨迹优化,并证明了与旋转态度的关节vae。我们证明了这种方法用于寻找血浆纳米颗粒材料系统的MNIST和实验数据的联合离散和连续旋转不变表示。已广泛讨论了所提出的方法的性能,它允许对其他ML模型进行任何高维高参数调整或轨迹优化。
Unsupervised and semi-supervised ML methods such as variational autoencoders (VAE) have become widely adopted across multiple areas of physics, chemistry, and materials sciences due to their capability in disentangling representations and ability to find latent manifolds for classification and regression of complex experimental data. Like other ML problems, VAEs require hyperparameter tuning, e.g., balancing the Kullback Leibler (KL) and reconstruction terms. However, the training process and resulting manifold topology and connectivity depend not only on hyperparameters, but also their evolution during training. Because of the inefficiency of exhaustive search in a high-dimensional hyperparameter space for the expensive to train models, here we explored a latent Bayesian optimization (zBO) approach for the hyperparameter trajectory optimization for the unsupervised and semi-supervised ML and demonstrate for joint-VAE with rotational invariances. We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system. The performance of the proposed approach has been discussed extensively, where it allows for any high dimensional hyperparameter tuning or trajectory optimization of other ML models.