论文标题
test2VEC:执行跟踪嵌入测试案例的优先级
Test2Vec: An Execution Trace Embedding for Test Case Prioritization
论文作者
论文摘要
大多数自动化软件测试任务可以从测试用例的抽象表示中受益。传统上,这是通过基于测试案例的代码覆盖范围来完成的。规范级别的标准可以替换代码覆盖范围以更好地表示测试用例的行为,但通常不具有成本效益。在本文中,我们假设测试用例的执行痕迹可以使其在自动测试任务中抽象其行为的好选择。我们提出了一种新颖的嵌入方法Test2VEC,将测试执行映射到潜在空间。我们在测试案例的优先级(TP)任务中评估了此表示形式。我们的默认TP方法基于嵌入式向量与历史失败测试向量的相似性。我们还根据测试向量的多样性研究了替代方案。最后,我们提出了一种为给定的测试套件决定选择哪种TP的方法。该实验基于几个真实和种子故障,并具有超过一百万个执行痕迹。结果表明,就第一个失败测试案例(FFR)的中位数等级而言,我们提出的TP将最佳替代方案提高了41.80%。就中位数APFD和中位数归一化FFR而言,它的表现优于传统代码覆盖范围的方法25.05%和59.25%。
Most automated software testing tasks can benefit from the abstract representation of test cases. Traditionally, this is done by encoding test cases based on their code coverage. Specification-level criteria can replace code coverage to better represent test cases' behavior, but they are often not cost-effective. In this paper, we hypothesize that execution traces of the test cases can be a good alternative to abstract their behavior for automated testing tasks. We propose a novel embedding approach, Test2Vec, that maps test execution traces to a latent space. We evaluate this representation in the test case prioritization (TP) task. Our default TP method is based on the similarity of the embedded vectors to historical failing test vectors. We also study an alternative based on the diversity of test vectors. Finally, we propose a method to decide which TP to choose, for a given test suite. The experiment is based on several real and seeded faults with over a million execution traces. Results show that our proposed TP improves best alternatives by 41.80% in terms of the median normalized rank of the first failing test case (FFR). It outperforms traditional code coverage-based approaches by 25.05% and 59.25% in terms of median APFD and median normalized FFR.