论文标题
途径不可压缩的树木的生长和不可还原性
Growth and irreducibility in path-incompressible trees
论文作者
论文摘要
我们研究有效的可压缩树木的有效的随机性变换。一些带有无限多路径的路径不可压缩的树并不能计算具有可计算的Oracle-use的完美路径随机树。稀疏的完美路径不可压缩的树几乎可以有效地致密。我们表征路径随机树的分支密度。
We study effective randomness-preserving transformations of path-incompressible trees. Some path-incompressible trees with infinitely many paths do not compute perfect path-random trees with computable oracle-use. Sparse perfect path-incompressible trees can be effectively densified, almost surely. We characterize the branching density of path-random trees.