论文标题
有预测的在线TSP
Online TSP with Predictions
论文作者
论文摘要
我们启动对在线路由问题进行预测的研究,灵感来自于学习授权算法领域的最新成果。如果预测准确,即使预测非常错误,则以黑盒方式结合了以黑盒方式进行预测,以胜过现有的算法,以胜过现有的算法,即使预测非常错误,这是克服悲观的最糟糕的竞争分析,即使预测是一个流行的框架。 在这项研究中,我们特别开始研究古典的在线旅行推销员问题(OLTSP),其中未来的要求随着预测而得到了增强。与以前其他研究中的预测模型不同,OLTSP中的每个实际请求与其到达时间和位置相关,可能与预测的每个实际请求可能不一致,这正如想象的那样会导致麻烦的情况。我们的主要结果是研究不同的预测模型和设计算法,以改善不同环境中最著名的结果。此外,我们将提出的结果推广到在线拨号问题上。
We initiate the study of online routing problems with predictions, inspired by recent exciting results in the area of learning-augmented algorithms. A learning-augmented online algorithm which incorporates predictions in a black-box manner to outperform existing algorithms if the predictions are accurate while otherwise maintaining theoretical guarantees even when the predictions are extremely erroneous is a popular framework for overcoming pessimistic worst-case competitive analysis. In this study, we particularly begin investigating the classical online traveling salesman problem (OLTSP), where future requests are augmented with predictions. Unlike the prediction models in other previous studies, each actual request in the OLTSP, associated with its arrival time and position, may not coincide with the predicted ones, which, as imagined, leads to a troublesome situation. Our main result is to study different prediction models and design algorithms to improve the best-known results in the different settings. Moreover, we generalize the proposed results to the online dial-a-ride problem.