论文标题
由于其不同的尺寸,欧罗巴和埃塞拉杜斯的不同冰壳几何形状:海洋热运输的影响
Different ice shell geometries on Europa and Enceladus due to their different sizes: impacts of ocean heat transport
论文作者
论文摘要
在冰冷的世界上,冰壳和地下海洋形成了一个耦合系统 - 冰厚度梯度引起的冰壳的热和盐度通量驱动海洋中的循环,而海洋循环的热传输则塑造了冰壳。因此,了解海洋热传输(OHT)对轨道参数的效率的依赖性可能使我们能够在直接观察之前预测冰壳的几何形状,从而为任务设计提供有用的信息。受到斜压涡流的启发,我首先是在冰形地形驱动的ICY月亮上的OHT的缩放定律,然后针对高分辨率3D数值模拟进行验证。使用缩放定律,我能够对冰壳的平衡厚度变化进行预测,因为冰壳应该接近热量平衡。冰壳上的冰壳(例如,土生土长)可能会在冰上驱动的赤道和极点之间发生较强的厚度变化,而冰中的极性放大的潮汐耗散,相反,大冰壳上的冰壳(例如,欧洲冰壳,欧洲,ganymede,callisto等)倾向于平坦,这是由于具有高效的效果而呈平稳的。考虑到冰散发,导电热损失和OHT引起的冰冻结/熔化以及冰流的质量再分配,这些预测是通过模拟地塔和欧罗巴模拟的不同的冰进化途径表现出来的。
On icy worlds, the ice shell and subsurface ocean form a coupled system -- heat and salinity flux from the ice shell induced by the ice thickness gradient drives circulation in the ocean, and in turn, the heat transport by ocean circulation shapes the ice shell. Therefore, understanding the dependence of the efficiency of ocean heat transport (OHT) on orbital parameters may allow us to predict the ice shell geometry before direct observation is possible, providing useful information for mission design. Inspired by previous works on baroclinic eddies, I first derive scaling laws for the OHT on icy moons, driven by ice topography, and then verify them against high resolution 3D numerical simulations. Using the scaling laws, I am then able to make predictions for the equilibrium ice thickness variation knowing that the ice shell should be close to heat balance. Ice shell on small icy moons (e.g., Enceladus) may develop strong thickness variations between the equator and pole driven by the polar-amplified tidal dissipation in the ice, to the contrary, ice shell on large icy moons (e.g., Europa, Ganymede, Callisto etc.) tends to be flat due to the smoothing effects of the efficient OHT. These predictions are manifested by the different ice evolution pathways simulated for Enceladus and Europa, considering the ice freezing/melting induced by ice dissipation, conductive heat loss and OHT as well as the mass redistribution by ice flow.