论文标题

变形量化的显式公式与变量的分离,用于复杂的二维局部对称的kähler歧管

Explicit formula of deformation quantization with separation of variables for complex two-dimensional locally symmetric Kähler manifold

论文作者

Okuda, Taika, Sako, Akifumi

论文摘要

我们通过变形量化变量量化了变量,给出了复杂的二维非共同局部对称的Kähler歧管。我们通过解决Hara-Sako给出的复发关系体系来呈现其恒星产品的明确公式。在二维情况下,这种复发关系系统给出了与两个坐标相对应的两种类型的方程。从两种类型的复发关系中,获得了对称和反对称复发关系。对称的一个给出了复发关系的解。从反对称的溶液中,可以获得溶液所满足的身份。 $ \ Mathbb {C}^{2} $和$ \ Mathbb {C} p^{2} $的星级产品是由本研究中获得的方法构造的,我们验证这些星团是否满足身份。

We give a complex two-dimensional noncommutative locally symmetric Kähler manifold via a deformation quantization with separation of variables. We present an explicit formula of its star product by solving the system of recurrence relations given by Hara-Sako. In the two-dimensional case, this system of recurrence relations gives two types of equations corresponding to the two coordinates. From the two types of recurrence relations, symmetrized and antisymmetrized recurrence relations are obtained. The symmetrized one gives the solution of the recurrence relation. From the antisymmetrized one, the identities satisfied by the solution are obtained. The star products for $\mathbb{C}^{2}$ and $\mathbb{C}P^{2}$ are constructed by the method obtained in this study, and we verify that these star products satisfy the identities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源