论文标题
用单眼RGB-D相机对动态场景的神经表面重建
Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera
论文作者
论文摘要
我们提出了一种神经动力构造(NDR),这是一种无模板的方法,可从单眼RGB-D摄像机中恢复动态场景的高保真几何形状和动作。在NDR中,我们对表面表示和渲染采用神经隐式函数,使捕获的颜色和深度可以完全利用来共同优化表面和变形。为了表示和限制非刚性变形,我们提出了一种新型的神经可逆变形网络,以便自动满足任意两个帧之间的循环一致性。考虑到动态场景的表面拓扑可能会随着时间的流逝而发生变化,我们采用一种拓扑感知的策略来构建融合框架的拓扑变化对应关系。 NDR还以全球优化的方式进一步完善了相机姿势。公共数据集和我们收集的数据集的实验表明,NDR的表现优于现有的单眼动态重建方法。
We propose Neural-DynamicReconstruction (NDR), a template-free method to recover high-fidelity geometry and motions of a dynamic scene from a monocular RGB-D camera. In NDR, we adopt the neural implicit function for surface representation and rendering such that the captured color and depth can be fully utilized to jointly optimize the surface and deformations. To represent and constrain the non-rigid deformations, we propose a novel neural invertible deforming network such that the cycle consistency between arbitrary two frames is automatically satisfied. Considering that the surface topology of dynamic scene might change over time, we employ a topology-aware strategy to construct the topology-variant correspondence for the fused frames. NDR also further refines the camera poses in a global optimization manner. Experiments on public datasets and our collected dataset demonstrate that NDR outperforms existing monocular dynamic reconstruction methods.