论文标题

关于阿贝利亚表面的局部全球原理

On the local-global principle for isogenies of abelian surfaces

论文作者

Lombardo, Davide, Verzobio, Matteo

论文摘要

令$ \ ell $为素数。我们对$ \ operatorName {sp} _4(\ Mathbb {f} _ \ ell)$和$ \ propatatorName {gsp} _4(\ Mathbb {f} _ \ ell)$进行分类。一个$ \ mathbb {f} _ \ ell $ - vector的尺寸1。我们使用此分类来证明,在许多情况下,阿伯利亚表面之间的局部global原理$ \ ell $在许多情况下都存在,尤其是每当亚伯层表面的范围很大的是$ $ $ $ \ eys $。最后,我们证明存在一些任意大的Primes $ \ ell $,其中某些Abelian Surface $ a/\ mathbb {q} $失败了local-lobal原理,用于$ \ ell $的同学。

Let $\ell$ be a prime number. We classify the subgroups $G$ of $\operatorname{Sp}_4(\mathbb{F}_\ell)$ and $\operatorname{GSp}_4(\mathbb{F}_\ell)$ that act irreducibly on $\mathbb{F}_\ell^4$, but such that every element of $G$ fixes an $\mathbb{F}_\ell$-vector subspace of dimension 1. We use this classification to prove that the local-global principle for isogenies of degree $\ell$ between abelian surfaces over number fields holds in many cases -- in particular, whenever the abelian surface has non-trivial endomorphisms and $\ell$ is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes $\ell$ for which some abelian surface $A/\mathbb{Q}$ fails the local-global principle for isogenies of degree $\ell$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源