论文标题
神经网络辅助深度地图包装,用于使用标准硬件视频编解码器进行压缩
Neural Network Assisted Depth Map Packing for Compression Using Standard Hardware Video Codecs
论文作者
论文摘要
各种图形渲染和处理操作需要深度图。当在分布式系统中执行此类操作时,经常需要深度图流,并且在大多数情况下需要快速执行压缩,这就是为什么经常使用视频编解码器的原因。标准视频编解码器的硬件实现甚至可以在资源约束的设备上,可以相对较高的分辨率和帧率组合,但是不幸的是,这些实现当前不支持RGB+深度扩展。但是,它们可以通过首先将深度图包装到RGB或YUV框架中来用于深度压缩。我们使用深度图包装的组合研究深度图压缩,然后使用标准视频编解码器进行编码。我们表明,深度图被包装的精度对由包装方案的组合和在比特率受到限制时造成的误差产生了很大且无处不在的影响。因此,我们提出了一个由神经网络模型辅助的可变精度包装方案,该模型可以预测给定比特率约束的每个深度图的最佳精度。我们证明该模型的产生几乎最佳的预测,并且可以将其集成到具有现代硬件的高架开销的游戏引擎中。
Depth maps are needed by various graphics rendering and processing operations. Depth map streaming is often necessary when such operations are performed in a distributed system and it requires in most cases fast performing compression, which is why video codecs are often used. Hardware implementations of standard video codecs enable relatively high resolution and framerate combinations, even on resource constrained devices, but unfortunately those implementations do not currently support RGB+depth extensions. However, they can be used for depth compression by first packing the depth maps into RGB or YUV frames. We investigate depth map compression using a combination of depth map packing followed by encoding with a standard video codec. We show that the precision at which depth maps are packed has a large and nontrivial impact on the resulting error caused by the combination of the packing scheme and lossy compression when bitrate is constrained. Consequently, we propose a variable precision packing scheme assisted by a neural network model that predicts the optimal precision for each depth map given a bitrate constraint. We demonstrate that the model yields near optimal predictions and that it can be integrated into a game engine with very low overhead using modern hardware.