论文标题
存在两种解决方案,用于单数φ-laplacian问题
Existence of two solutions for singular Φ-Laplacian problems
论文作者
论文摘要
证明了参数奇异线性椭圆形问题的两个解决方案的存在。该方程是由φ-laplacian operation驱动的,反应项可以是非单调的。所采用的主要工具是局部最低定理,山区通过定理以及截断技术。还主要通过先验估计和扰动技术研究了全局c^{1,τ}解决方案的规律性。
Existence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by the Φ-Laplacian operator and the reaction term can be non-monotone. The main tools employed are a local minimum theorem and the Mountain Pass theorem, together with the truncation technique. Global C^{1,τ} regularity of solutions is also investigated, chiefly via a priori estimates and perturbation techniques.