论文标题
精确的绿色功能可用于本地化不可逆潜力
Exact Green's functions for localized irreversible potentials
论文作者
论文摘要
我们研究了破坏空间和时间可逆性的局部障碍物引起的散射的量子力学问题。因此,我们遵循麦克斯韦的处方,通过在哈密顿量中的动量依赖相互作用来违反热力学的第二定律,从而导致了所谓的麦克斯韦的恶魔。我们在分析上及其仿产结构在分析上获得了依赖能量的绿色功能。在1950年代,M. Moshinsky的工作的精神,两极直接导致了进化问题的解决方案。对称初始条件以这种方式进化,显示出在波数据包的崩溃和复兴方面,经典和类似波浪状的不可逆性之间的重要差异。我们的设置可以推广到其他波动运营商,例如经典制度中的电磁腔。
We study the quantum-mechanical problem of scattering caused by a localized obstacle that breaks spatial and temporal reversibility. Accordingly, we follow Maxwell's prescription to achieve a violation of the second law of thermodynamics by means of a momentum-dependent interaction in the Hamiltonian, resulting in what is known as Maxwell's demon. We obtain the energy-dependent Green's function analytically, as well as its meromorphic structure. The poles lead directly to the solution of the evolution problem, in the spirit of M. Moshinsky's work in the 1950s. Symmetric initial conditions are evolved in this way, showing important differences between classical and wave-like irreversibility in terms of collapses and revivals of wave packets. Our setting can be generalized to other wave operators, e.g. electromagnetic cavities in a classical regime.