论文标题
带有Hadamard测试和近似振幅约束的量子Goemans-Williamson算法
Quantum Goemans-Williamson Algorithm with the Hadamard Test and Approximate Amplitude Constraints
论文作者
论文摘要
半决赛程序是具有各种应用程序的优化方法,例如近似困难的组合问题。这样一个半决赛的程序是Goemans-Williamson算法,这是一种流行的整数放松技术。我们为Goemans-Williamson算法介绍了一种差异量子算法,该算法仅使用$ n {+} 1 $ QUBITS,恒定的电路准备数量和$ \ text {poly} $期望值,以便大约在半度溶解的半岛上使用$ n = 2^n $ n = 2^n $ variable和$ n $ n $ n $ n $ n $ n $ n。通过将目标矩阵编码为在辅助量子轴上的适当参数化的单一条件,这是一种称为Hadamard测试的技术,可以实现有效的优化。 Hadamard测试使我们能够通过仅估计Ancilla Qubit的单个期望值来优化目标函数,而不是单独估计许多期望值。同样,我们说明,可以通过实施第二次Hadamard测试以及施加多项式数量的Pauli字符串振幅约束来有效地执行半决赛编程约束。我们通过设计有效的goemans-williamson算法来证明协议的有效性,以解决包括Maxcut在内的各种NP-硬性问题。我们的方法超过了GSET库中研究良好的最大问题子集的类似经典方法的性能。
Semidefinite programs are optimization methods with a wide array of applications, such as approximating difficult combinatorial problems. One such semidefinite program is the Goemans-Williamson algorithm, a popular integer relaxation technique. We introduce a variational quantum algorithm for the Goemans-Williamson algorithm that uses only $n{+}1$ qubits, a constant number of circuit preparations, and $\text{poly}(n)$ expectation values in order to approximately solve semidefinite programs with up to $N=2^n$ variables and $M \sim O(N)$ constraints. Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit, a technique known as the Hadamard Test. The Hadamard Test enables us to optimize the objective function by estimating only a single expectation value of the ancilla qubit, rather than separately estimating exponentially many expectation values. Similarly, we illustrate that the semidefinite programming constraints can be effectively enforced by implementing a second Hadamard Test, as well as imposing a polynomial number of Pauli string amplitude constraints. We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems, including MaxCut. Our method exceeds the performance of analogous classical methods on a diverse subset of well-studied MaxCut problems from the GSet library.