论文标题

基于知识的VQA的统一端到端猎犬阅读器框架

A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA

论文作者

Guo, Yangyang, Nie, Liqiang, Wong, Yongkang, Liu, Yibing, Cheng, Zhiyong, Kankanhalli, Mohan

论文摘要

基于知识的视觉问题答案(VQA)希望模型依靠外部知识来进行强大的答案预测。尽管这很重要,但本文发现了阻碍当前最新方法发展的几个主要因素。一方面,利用明确知识的方法将知识视为训练有素的VQA模型的补充。尽管它们有效,但这些方法通常会遭受噪声纳入和错误传播的影响。另一方面,与隐式知识有关的是,基于知识的VQA的多模式隐式知识仍然在很大程度上没有探索。这项工作为基于知识的VQA提供了统一的端到端检索器框架。特别是,我们阐明了从视觉语言预训练模型中的多模式隐式知识,以挖掘其在知识推理中的潜力。至于检索操作在显式知识上遇到的噪音问题,我们设计了一种新颖的方案,以创建伪标签以进行有效的知识监督。该方案不仅能够为知识检索提供指导,而且还可以将这些实例带入问题回答的可能性。为了验证所提出方法的有效性,我们在基准数据集上进行了广泛的实验。实验结果表明,我们的方法的表现优于现有基准,而明显的边距。除了报道的数字外,本文还通过一些经验发现,进一步催生了对未来研究的知识利用的一些见解。

Knowledge-based Visual Question Answering (VQA) expects models to rely on external knowledge for robust answer prediction. Though significant it is, this paper discovers several leading factors impeding the advancement of current state-of-the-art methods. On the one hand, methods which exploit the explicit knowledge take the knowledge as a complement for the coarsely trained VQA model. Despite their effectiveness, these approaches often suffer from noise incorporation and error propagation. On the other hand, pertaining to the implicit knowledge, the multi-modal implicit knowledge for knowledge-based VQA still remains largely unexplored. This work presents a unified end-to-end retriever-reader framework towards knowledge-based VQA. In particular, we shed light on the multi-modal implicit knowledge from vision-language pre-training models to mine its potential in knowledge reasoning. As for the noise problem encountered by the retrieval operation on explicit knowledge, we design a novel scheme to create pseudo labels for effective knowledge supervision. This scheme is able to not only provide guidance for knowledge retrieval, but also drop these instances potentially error-prone towards question answering. To validate the effectiveness of the proposed method, we conduct extensive experiments on the benchmark dataset. The experimental results reveal that our method outperforms existing baselines by a noticeable margin. Beyond the reported numbers, this paper further spawns several insights on knowledge utilization for future research with some empirical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源