论文标题
半监督的生成对抗网络,用于使用部分标记的生理数据进行压力检测
Semi-Supervised Generative Adversarial Network for Stress Detection Using Partially Labeled Physiological Data
论文作者
论文摘要
生理测量涉及观察变量直接或间接地归因于人类系统和子系统的规范功能。测量值可用于检测具有目标的人的情感状态,例如改善人类计算机相互作用。收集生理数据有几种方法,但是可穿戴传感器是一种常见的,无创的工具,用于准确读取。但是,很难从原始生理数据中提取有价值的信息,尤其是对于情感状态检测。机器学习技术用于通过标记的生理数据来检测人的情感状态。使用标记数据的一个明显问题是创建准确的标签。需要专家来分析参与者的记录形式,并具有不同状态(例如压力和镇定)的标记部分。虽然昂贵,但此方法提供了一个完整的数据集,其中包含标记的数据,可用于任何数量的监督算法。一个有趣的问题来自昂贵的标签:如何在保持高准确性的同时降低成本?半监督学习(SSL)是解决此问题的潜在解决方案。这些算法允许仅使用一小部分标记数据来培训机器学习模型(与无需使用标签的无监督不同)。他们提供了一种避免昂贵标签的方法。本文将充分监督的算法与公共WESAD(可穿戴压力和影响检测)数据集的SSL进行了比较。本文表明,半监督算法是具有准确结果的廉价情感检测系统的可行方法。
Physiological measurements involves observing variables that attribute to the normative functioning of human systems and subsystems directly or indirectly. The measurements can be used to detect affective states of a person with aims such as improving human-computer interactions. There are several methods of collecting physiological data, but wearable sensors are a common, non-invasive tool for accurate readings. However, valuable information is hard to extract from the raw physiological data, especially for affective state detection. Machine Learning techniques are used to detect the affective state of a person through labeled physiological data. A clear problem with using labeled data is creating accurate labels. An expert is needed to analyze a form of recording of participants and mark sections with different states such as stress and calm. While expensive, this method delivers a complete dataset with labeled data that can be used in any number of supervised algorithms. An interesting question arises from the expensive labeling: how can we reduce the cost while maintaining high accuracy? Semi-Supervised learning (SSL) is a potential solution to this problem. These algorithms allow for machine learning models to be trained with only a small subset of labeled data (unlike unsupervised which use no labels). They provide a way of avoiding expensive labeling. This paper compares a fully supervised algorithm to a SSL on the public WESAD (Wearable Stress and Affect Detection) Dataset for stress detection. This paper shows that Semi-Supervised algorithms are a viable method for inexpensive affective state detection systems with accurate results.