论文标题

预测乳腺癌的机器学习方法:孟加拉国的观点

Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective

论文作者

Islam, Taminul, Kundu, Arindom, Khan, Nazmul Islam, Bonik, Choyon Chandra, Akter, Flora, Islam, Md Jihadul

论文摘要

如今,乳腺癌已成为近年来最突出的死亡原因之一。在所有恶性肿瘤中,这是全球妇女最常见和主要的死亡原因。手动诊断这种疾病需要大量的时间和专业知识。乳腺癌的检测很耗时,并且可以通过开发基于机器的乳腺癌预测来减少疾病的传播。在机器学习中,系统可以从先前的实例中学习,并使用各种统计,概率和优化方法从嘈杂或复杂的数据集中找到难以检测的模式。这项工作比较了几种机器学习算法的分类准确性,精度,灵敏度和新近收集的数据集的特异性。在这种工作决策树,随机森林,逻辑回归,天真的贝叶斯和XGBoost中,已经实施了这五种机器学习方法,以在我们的数据集中获得最佳性能。这项研究的重点是找到最佳的算法,该算法可以预测乳腺癌,其类别的准确性最高。这项工作在效率和有效性方面评估了每种算法数据分类的质量。并与该领域的其他已发表的工作进行了比较。实施模型后,这项研究达到了最佳模型准确性,在随机森林和XGBoost上达到了94%。

Nowadays, Breast cancer has risen to become one of the most prominent causes of death in recent years. Among all malignancies, this is the most frequent and the major cause of death for women globally. Manually diagnosing this disease requires a good amount of time and expertise. Breast cancer detection is time-consuming, and the spread of the disease can be reduced by developing machine-based breast cancer predictions. In Machine learning, the system can learn from prior instances and find hard-to-detect patterns from noisy or complicated data sets using various statistical, probabilistic, and optimization approaches. This work compares several machine learning algorithm's classification accuracy, precision, sensitivity, and specificity on a newly collected dataset. In this work Decision tree, Random Forest, Logistic Regression, Naive Bayes, and XGBoost, these five machine learning approaches have been implemented to get the best performance on our dataset. This study focuses on finding the best algorithm that can forecast breast cancer with maximum accuracy in terms of its classes. This work evaluated the quality of each algorithm's data classification in terms of efficiency and effectiveness. And also compared with other published work on this domain. After implementing the model, this study achieved the best model accuracy, 94% on Random Forest and XGBoost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源