论文标题
设计插入材料中的形状内存样微结构
Designing shape-memory-like microstructures in intercalation materials
论文作者
论文摘要
在可逆的离子插入过程中,插入材料中的晶格经历结构转换。这些晶格变换产生了不匹配的应变和体积变化,进而有助于插入材料的结构衰减并限制其可逆循环。在本文中,我们借鉴了形状内存合金(另一种类别转换材料)的见解,这些材料也经历了较大的晶格转换,但可以通过可忽略不计的宏观体积变化和内部应力来做到这一点。我们开发了一个理论框架,以预测互化化合物中的结构转换,并建立在插入材料中形成形状 - 记忆样微结构所必需的晶体学设计规则。我们使用我们的框架系统地筛选了包含N> 5000对插入化合物的开源结构数据库。我们确定候选化合物,例如li $ _x $ mn $ _2 $ o $ _4 $(Spinel),li $ _x $ _x $ ti $ _2 $(po $ _4 $)$ _ 3 $(NASICON),大约可以满足晶体学设计规则,并且可以精确地掺杂形成形状的微构造,以形成形状式的微构造。在整个过程中,我们将分析结果与插入化合物的实验测量进行了比较。我们发现结构转化,微观结构和增加这些材料的容量保留之间的直接相关性。这些结果更普遍地表明,互嵌材料的晶体学设计可能是发现不会随着连续使用而衰减的化合物的新途径。
During the reversible insertion of ions, lattices in intercalation materials undergo structural transformations. These lattice transformations generate misfit strains and volume changes that, in turn, contribute to the structural decay of intercalation materials and limit their reversible cycling. In this paper, we draw on insights from shape-memory alloys, another class of phase transformation materials, that also undergo large lattice transformations but do so with negligible macroscopic volume changes and internal stresses. We develop a theoretical framework to predict structural transformations in intercalation compounds and establish crystallographic design rules necessary for forming shape-memory-like microstructures in intercalation materials. We use our framework to systematically screen open-source structural databases comprising n > 5000 pairs of intercalation compounds. We identify candidate compounds, such as Li$_x$Mn$_2$O$_4$ (Spinel), Li$_x$Ti$_2$(PO$_4$)$_3$ (NASICON), that approximately satisfy the crystallographic design rules and can be precisely doped to form shape-memory-like microstructures. Throughout, we compare our analytical results with experimental measurements of intercalation compounds. We find a direct correlation between structural transformations, microstructures, and increased capacity retention in these materials. These results, more generally, show that crystallographic designing of intercalation materials could be a novel route to discovering compounds that do not decay with continuous usage.