论文标题

量子计算的简洁经典验证

Succinct Classical Verification of Quantum Computation

论文作者

Bartusek, James, Kalai, Yael Tauman, Lombardi, Alex, Ma, Fermi, Malavolta, Giulio, Vaikuntanathan, Vinod, Vidick, Thomas, Yang, Lisa

论文摘要

我们为量子计算(BQP)构建了一个经典可验证的简洁交互式参数,并具有通信复杂性和验证者运行时,在BQP计算的运行时(以及安全参数中的多项式)在运行时是多层的。假设无法区分性混淆(IO)和错误(LWE)学习后的量化后安全性(LWE),我们的协议是安全的。这是普通模型中量子计算的第一个简洁论点。先前的工作(Chia-chung-yamakawa,TCC '20)需要长期的常见参考字符串和非黑色框使用,将其建模为随机Oracle建模。 在技​​术层面上,我们重新审视构建经典可验证的量子计算的框架(Mahadev,Focs '18)。我们为Mahadev的协议提供了独立的安全证明,我们认为这具有独立的兴趣。我们的证明很容易概括为验证者的第一个消息(由许多公共密钥组成)的设置。接下来,我们将这种压缩公共钥匙的概念形式化。我们将对象视为受约束/可编程PRF的概括,并基于无法区分的混淆来实例化。 最后,我们将上述协议汇编为完全简洁的参数,使用NP知识的简洁论点(足够组合)。使用我们的框架,我们取得了一些其他结果,包括 - QMA的简洁论点(鉴于证人的多个副本), - 量子随机甲骨文模型中BQP(或QMA)的简洁非交互论点,以及 - 假设BQP(或QMA)的简洁批量参数假定后量子LWE(没有IO)。

We construct a classically verifiable succinct interactive argument for quantum computation (BQP) with communication complexity and verifier runtime that are poly-logarithmic in the runtime of the BQP computation (and polynomial in the security parameter). Our protocol is secure assuming the post-quantum security of indistinguishability obfuscation (iO) and Learning with Errors (LWE). This is the first succinct argument for quantum computation in the plain model; prior work (Chia-Chung-Yamakawa, TCC '20) requires both a long common reference string and non-black-box use of a hash function modeled as a random oracle. At a technical level, we revisit the framework for constructing classically verifiable quantum computation (Mahadev, FOCS '18). We give a self-contained, modular proof of security for Mahadev's protocol, which we believe is of independent interest. Our proof readily generalizes to a setting in which the verifier's first message (which consists of many public keys) is compressed. Next, we formalize this notion of compressed public keys; we view the object as a generalization of constrained/programmable PRFs and instantiate it based on indistinguishability obfuscation. Finally, we compile the above protocol into a fully succinct argument using a (sufficiently composable) succinct argument of knowledge for NP. Using our framework, we achieve several additional results, including - Succinct arguments for QMA (given multiple copies of the witness), - Succinct non-interactive arguments for BQP (or QMA) in the quantum random oracle model, and - Succinct batch arguments for BQP (or QMA) assuming post-quantum LWE (without iO).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源