论文标题

通过利用多个分辨率来识别和打击分割网络中的偏见

Identifying and Combating Bias in Segmentation Networks by leveraging multiple resolutions

论文作者

Henschel, Leonie, Kügler, David, Andrews, Derek S, Nordahl, Christine W, Reuter, Martin

论文摘要

对偏见的探索对深度学习管道在医疗环境中的透明度和适用性有重大影响,但到目前为止,还经过了严格的研究。在本文中,我们考虑了仅在不同的图像分辨率下可用于培训数据的两个单独的组。对于H组,可用的图像和标签处于首选高分辨率,而对于L组L仅弃用较低的分辨率数据。我们分析了数据分布中的这种分辨率偏差如何传播到高分辨率下L组L组的系统偏差预测。我们的结果表明,单分辨率训练设置会导致体积组差异的显着损失,这些差异转化为通过DSC衡量的错误分割,以及随后在低分辨率组上的分类失败。我们进一步探讨了如何使用跨决议的培训数据来应对这种系统偏见。具体而言,我们研究了图像重新采样,扩展和解决独立性的影响,并证明可以通过多分辨率方法有效地降低偏见。

Exploration of bias has significant impact on the transparency and applicability of deep learning pipelines in medical settings, yet is so far woefully understudied. In this paper, we consider two separate groups for which training data is only available at differing image resolutions. For group H, available images and labels are at the preferred high resolution while for group L only deprecated lower resolution data exist. We analyse how this resolution-bias in the data distribution propagates to systematically biased predictions for group L at higher resolutions. Our results demonstrate that single-resolution training settings result in significant loss of volumetric group differences that translate to erroneous segmentations as measured by DSC and subsequent classification failures on the low resolution group. We further explore how training data across resolutions can be used to combat this systematic bias. Specifically, we investigate the effect of image resampling, scale augmentation and resolution independence and demonstrate that biases can effectively be reduced with multi-resolution approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源