论文标题

识别有限树宽的地图图

Recognizing Map Graphs of Bounded Treewidth

论文作者

Angelini, Patrizio, Bekos, Michael A., Da Lozzo, Giordano, Gronemann, Martin, Montecchiani, Fabrizio, Tappini, Alessandra

论文摘要

地图图是一个图形,该图是一个表示,其中顶点是球形地图上的国家,边缘是共享曲线段或国家之间的点。我们提出了一种明确的固定参数可拖动算法,用于识别由树宽参数参数的地图图。该算法的时间复杂性在图形的大小上是线性的,如果输入是“是”,则以所谓的证人的形式报告证书。此外,如果输入图承认$ k $ -map(最多在$ k $ nations在公共点上会议)或一个无孔的〜$ k $ -map(至少一个国家覆盖了每个国家的每个国家,则可以在更通用的算法框架内开发该结果,该算法允许对任何$ k $进行测试。我们指出的是,尽管输入图的树宽界限也界定了其最大集团的大小,但仅后者似乎并没有足够强大的结构限制来获得有效的时间复杂性。实际上,虽然$ K $ -MAP图中最大的集团是$ \ lfloor 3k/2 \ rfloor $,但对于任何固定的$ k \ ge 5 $,$ k $ -map图的识别仍然是打开的。

A map graph is a graph admitting a representation in which vertices are nations on a spherical map and edges are shared curve segments or points between nations. We present an explicit fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a certificate in the form of a so-called witness. Furthermore, this result is developed within a more general algorithmic framework that allows to test, for any $k$, if the input graph admits a $k$-map (where at most $k$ nations meet at a common point) or a hole-free~$k$-map (where each point of the sphere is covered by at least one nation). We point out that, although bounding the treewidth of the input graph also bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural limitation to obtain an efficient time complexity. In fact, while the largest clique in a $k$-map graph is $\lfloor 3k/2 \rfloor$, the recognition of $k$-map graphs is still open for any fixed $k \ge 5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源