论文标题

使用BERT功能的两阶段COVID19分类

Two-Stage COVID19 Classification Using BERT Features

论文作者

Tan, Weijun, Yao, Qi, Liu, Jingfeng

论文摘要

我们建议使用双Bert特征提取从肺CT-SCAN切片图像中提出一个自动COVID1-19诊断框架。在第一个BERT特征提取中,首先使用3D-CNN提取CNN内部特征图。伯特·伯特(Bert)的时间po不使用全球平均池,而是用于在这些特征图中汇总时间信息,然后进行分类层。首先,该3D-CNN-BERT分类网络对每个原始CT扫描量的固定数量的图像进行了训练。在第二阶段,在每个CT扫描量的所有切片图像上都提取了3D-CNN-BERT嵌入功能,并且将这些特征平均为固定数量的片段。然后,另一个BERT网络用于将这些多个功能汇总到单个功能中,然后是另一个分类层。将两个阶段的分类结果组合在一起以生成最终输出。在验证数据集上,我们达到了0.9164的宏F1分数。

We propose an automatic COVID1-19 diagnosis framework from lung CT-scan slice images using double BERT feature extraction. In the first BERT feature extraction, A 3D-CNN is first used to extract CNN internal feature maps. Instead of using the global average pooling, a late BERT temporal pooing is used to aggregate the temporal information in these feature maps, followed by a classification layer. This 3D-CNN-BERT classification network is first trained on sampled fixed number of slice images from every original CT scan volume. In the second stage, the 3D-CNN-BERT embedding features are extracted on all slice images of every CT scan volume, and these features are averaged into a fixed number of segments. Then another BERT network is used to aggregate these multiple features into a single feature followed by another classification layer. The classification results of both stages are combined to generate final outputs. On the validation dataset, we achieve macro F1 score of 0.9164.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源