论文标题

深度学习的昏迷集群的动态质量

The Dynamical Mass of the Coma Cluster from Deep Learning

论文作者

Ho, Matthew, Ntampaka, Michelle, Rau, Markus Michael, Chen, Minghan, Lansberry, Alexa, Ruehle, Faith, Trac, Hy

论文摘要

1933年,弗里茨·兹维奇(Fritz Zwicky)对昏迷群集的著名调查使他推断了暗物质的存在\ cite {19333ACHPH ... 6..110Z}。事实证明,他的基本发现是现代宇宙学的基础。众所周知,这种暗物质占物质的85%和宇宙中质量能量的25%。除热电离气体和数千个星系外,昏迷等星系簇是庞大的,复杂的暗物质系统,并充当了暗物质分布的极好探针。但是,经验研究表明,这种系统的总质量仍然难以捉摸,难以精确约束。在这里,我们根据近年来开发的贝叶斯深度学习方法,对昏迷群的动态质量进行了新的估计。使用我们新颖的数据驱动方法,我们预测COMA的$ \ mthc $质量为$ 10^{15.10 \ pm 0.15} \ \ \ hmsun $,半径为$ 1.78 \ pm 0.03 \ pm 0.03 \ h^{ - 1} \ 1} \ mathrm {mpc} $。我们表明,在多个培训数据集中,我们的预测是严格的,并且在统计学上与昏迷质量的历史估计相一致。这种测量可以增强我们对昏迷群集动态状态的理解,并进步了对机器学习在天文学中经验应用的严格分析和验证方法。

In 1933, Fritz Zwicky's famous investigations of the mass of the Coma cluster led him to infer the existence of dark matter \cite{1933AcHPh...6..110Z}. His fundamental discoveries have proven to be foundational to modern cosmology; as we now know such dark matter makes up 85\% of the matter and 25\% of the mass-energy content in the universe. Galaxy clusters like Coma are massive, complex systems of dark matter in addition to hot ionized gas and thousands of galaxies, and serve as excellent probes of the dark matter distribution. However, empirical studies show that the total mass of such systems remains elusive and difficult to precisely constrain. Here, we present new estimates for the dynamical mass of the Coma cluster based on Bayesian deep learning methodologies developed in recent years. Using our novel data-driven approach, we predict Coma's $\mthc$ mass to be $10^{15.10 \pm 0.15}\ \hmsun$ within a radius of $1.78 \pm 0.03\ h^{-1}\mathrm{Mpc}$ of its center. We show that our predictions are rigorous across multiple training datasets and statistically consistent with historical estimates of Coma's mass. This measurement reinforces our understanding of the dynamical state of the Coma cluster and advances rigorous analyses and verification methods for empirical applications of machine learning in astronomy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源