论文标题

用重力波检测器搜索黑块

Searching for Dark Clumps with Gravitational-Wave Detectors

论文作者

Baum, Sebastian, Fedderke, Michael A., Graham, Peter W.

论文摘要

在重力波(GW)检测器中,太阳系在测试质量(TM)上施加加速度的深色紧凑对象(“团块”)。我们在各种频率上运行的各种当前和未来的GW检测器中重新检查了这些团块转移的可检测性。通过内部太阳系引起的TM加速度的TM加速度在$ f \simμ$ Hz左右的频率含量。我们中的一些人[Arxiv:2112.11431]最近提出了一个基于小行星至板球范围的$μ$ Hz灵敏度的GW检测概念。从对该概念的详细敏感性投影,我们在分析和模拟中都发现,纯粹的引力团块 - 互动将产生一个可检测到的每个$ \ sim 20 $ yrs,如果用质量$ $ $ m _ {\ text {cl} {cl}}} \ sim 10^{14}^{14} \ text $ saturate {kg} $ saturate(dms)(dms)(dms)使用局部TMS和在较高频带中运行的其他(拟议的)GW检测器对较小的团块质量敏感,并且具有较小的可发现信号速率。我们还考虑了团块的案例,具有额外的有吸引力的长距离陷阱 - 第五力量明显高于重力(但逃避已知的第五力限制)。对于$μ$ Hz检测器的概念,我们使用模拟表明,例如,集团 - 五力$ \ sim 10^3 $倍于重力强,范围$ \ sim \ sim \ text {au} $将可检测到的可检测到的速度提高到质量范围的$ 10^^^kg fexts fext { m _ {\ text {cl}} \ lyseSim 10^{14} \ text {kg} $,即使它们是$ \ sim 1 $ \ sim 1 $%$%sub-component。 $ $ $ Hz GW检测器的能力探测小行星质量尺度的深色物体,否则可能是无法检测到的bolsters科学案例的开发案例。

Dark compact objects ("clumps") transiting the Solar System exert accelerations on the test masses (TM) in a gravitational-wave (GW) detector. We reexamine the detectability of these clump transits in a variety of current and future GW detectors, operating over a broad range of frequencies. TM accelerations induced by clump transits through the inner Solar System have frequency content around $f \sim μ$Hz. Some of us [arXiv:2112.11431] recently proposed a GW detection concept with $μ$Hz sensitivity, based on asteroid-to-asteroid ranging. From the detailed sensitivity projection for this concept, we find both analytically and in simulation that purely gravitational clump-matter interactions would yield one detectable transit every $\sim 20$ yrs, if clumps with mass $m_{\text{cl}} \sim 10^{14} \text{kg}$ saturate the dark-matter (DM) density. Other (proposed) GW detectors using local TMs and operating in higher frequency bands are sensitive to smaller clump masses and have smaller rates of discoverable signals. We also consider the case of clumps endowed with an additional attractive long-range clump-matter fifth force significantly stronger than gravity (but evading known fifth-force constraints). For the $μ$Hz detector concept, we use simulations to show that, for example, a clump-matter fifth-force $\sim 10^3$ times stronger than gravity with a range of $\sim\text{AU}$ would boost the rate of detectable transits to a few per year for clumps in the mass range $10^{11} \text{kg} \lesssim m_{\text{cl}} \lesssim 10^{14} \text{kg}$, even if they are a $\sim 1$% sub-component of the DM. The ability of $μ$Hz GW detectors to probe asteroid-mass-scale dark objects that may otherwise be undetectable bolsters the science case for their development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源