论文标题
大N型胶合球的光谱:全息图与晶格
Spectrum of Large N Glueballs: Holography vs Lattice
论文作者
论文摘要
最近,在晶格仪理论的粘合球州的研究中取得了显着进展,特别是将其光谱推断到大量颜色$ n $的极限。在本说明中,我们将大型$ N $晶格结果与全息预测进行了比较,重点是Klebanov-Strassler模型。我们注意到,粘合球谱显示了一系列仪表理论模型的近似通用性。由于这种通用性,全息模型可以为具有和不具有超对称性的纯$ su(n)$ yang-mills理论提供可靠的预测。这对于超对称理论尤其重要,尚不存在牢固的晶格预测,并且全息模型仍然是最容易拖延的方法。对于具有$ n $的大型纯净的$ su(n)$理论,我们在晶格和全息图之间找到了一项在各个部门中最轻州的质量比的5-8%之间的协议。尤其是晶格和全息图提供了$ 2^{++} $和$ 1^{ - } $质量比的预测,与Pomeron和Odderon regge轨迹的已知约束一致。
Recently there has been a notable progress in the study of glueball states in lattice gauge theories, in particular extrapolating their spectrum to the limit of large number of colors $N$. In this note we compare the large $N$ lattice results with the holographic predictions, focusing on the Klebanov-Strassler model. We note that glueball spectrum demonstrates approximate universality across a range of gauge theory models. Because of this universality the holographic models can give reliable predictions for the spectrum of pure $SU(N)$ Yang-Mills theories with and without supersymmetry. This is especially important for the supersymmetric theories, for which no firm lattice predictions exist yet, and the holographic models remain the most tractable approach. For non-supersymmetric pure $SU(N)$ theories with large $N$ we find an agreement within 5-8% between the lattice and holographic predictions for the mass ratios of the lightest states in various sectors. In particular both lattice and holography give predictions for the $2^{++}$ and $1^{--}$ mass ratio, consistent with the known constraints on the pomeron and odderon Regge trajectories.