论文标题
具有有界能谱的状态的量子速度极限
Quantum Speed Limit for States with a Bounded Energy Spectrum
论文作者
论文摘要
量子速度限制设置了状态进化的最大速度。有两个众所周知的限制,用于单一独立的哈密顿量:曼德尔斯坦 - 塔姆和玛格鲁斯 - 静脉素蛋白的界限。前者根据国家能量不确定性限制了速率,而后者则取决于相对于基态的平均能量。在这里,我们报告了具有有界能谱的州存在的附加界限。这种结合是玛格鲁斯 - 拉维丁蛋白双重的,因为它取决于国家的平均能量与最高占领的特征态的能量之间的差异。根据能量的传播和平均值,这三个界限中的每个界限都可以成为最严格的一个界限,从而形成了三个动态态度,这些动力学在多级别系统中可访问。新的界限与量子信息应用相关,因为在大多数信息中,信息被存储和操纵在具有有界能谱的希尔伯特空间中。
Quantum speed limits set the maximal pace of state evolution. Two well-known limits exist for a unitary time-independent Hamiltonian: the Mandelstam-Tamm and Margolus-Levitin bounds. The former restricts the rate according to the state energy uncertainty, while the latter depends on the mean energy relative to the ground state. Here we report on an additional bound that exists for states with a bounded energy spectrum. This bound is dual to the Margolus-Levitin one in the sense that it depends on the difference between the state's mean energy and the energy of the highest occupied eigenstate. Each of the three bounds can become the most restrictive one, depending on the spread and mean of the energy, forming three dynamical regimes which are accessible in a multi-level system. The new bound is relevant for quantum information applications, since in most of them, information is stored and manipulated in a Hilbert space with a bounded energy spectrum.