论文标题
用投影矢量场磁铁进行自旋轨道扭矩表征的深度学习
Deep Learning for Spin-Orbit Torque Characterizations with a Projected Vector Field Magnet
论文作者
论文摘要
通过磁滞环路移动测量测量和平面霍尔校正,在投影矢量场磁铁上证明了带有垂直方向性的磁异质的旋转轨道扭矩表征。在深度学习模型的帮助下,实现了矢量磁铁的精确磁场校准,该模型能够捕获生成的磁场和应用于磁铁的电流之间的非线性行为。训练有素的模型可以在磁场扫描,角度扫描和磁滞回路偏移测量的情况下成功预测所应用的电流组合。通过比较从深度学习训练的矢量磁铁系统获得的自旋轨道扭矩表征结果的比较,并从由两个分离的电磁体组成的传统设置获得的旋转轨道表征结果进行了补充,进一步验证了模型的有效性。从向量磁铁中提取的类似阻尼的旋转轨道扭矩(DL-SOT)效率(| $ξ_{dl} $ |)是一致的,其中| $ξ_{dl} $ | $ \ $ \ $ 0.22的无定形W和| $ξ_{dl} $ | $ \ $ \ $ 0.02,$α$ -W。我们的工作提供了一种先进的方法来精心控制矢量磁铁并方便地执行各种自旋轨道扭矩特征。
Spin-orbit torque characterizations on magnetic heterostructures with perpendicular anisotropy are demonstrated on a projected vector field magnet via hysteresis loop shift measurement and harmonic Hall measurement with planar Hall correction. Accurate magnetic field calibration of the vector magnet is realized with the help of deep learning models, which are able to capture the nonlinear behavior between the generated magnetic field and the currents applied to the magnet. The trained models can successfully predict the applied current combinations under the circumstances of magnetic field scans, angle scans, and hysteresis loop shift measurements. The validity of the models is further verified, complemented by the comparison of the spin-orbit torque characterization results obtained from the deep-learning-trained vector magnet system with those obtained from a conventional setup comprised of two separated electromagnets. The damping-like spin-orbit torque (DL-SOT) efficiencies (|$ξ_{DL}$|) extracted from the vector magnet and the traditional measurement configuration are consistent, where |$ξ_{DL}$| $\approx$ 0.22 for amorphous W and |$ξ_{DL}$| $\approx$ 0.02 for $α$-W. Our work provides an advanced method to meticulously control a vector magnet and to conveniently perform various spin-orbit torque characterizations.