论文标题

一类局部函数的差分光谱和回旋镖光谱

The differential spectrum and boomerang spectrum of a class of locally-APN functions

论文作者

Hu, Zhao, Li, Nian, Xu, Linjie, Zeng, Xiangyong, Tang, Xiaohu

论文摘要

在本文中,我们研究了电源映射$ f(x)= x^{k(q-1)} $ over $ {\ mathbb f} _ {q^2} $,其中$ q = p^m $,$ p $是prime,$ m $是一个正integer和$ \ gcd(kcd(kcd(kcd))= 1 $ 1)= 1 $ 1)= 1 = 1 $ 1 = 1 = 1)= 1 = 1 $ 1 = 1 = 1 = 1 = 1 = 1 = 1 $ 1 = 1 = 1 = 1 $ 1)的动力映射的回旋镖光谱。我们首先确定$ f(x)$的差异光谱,并表明$ f(x)$是本地apn。这扩展了[IEEE Trans的结果。 inf。理论57(12):8127-8137,2011]从$(p,k)=(2,1)$ to General $(p,k)$。然后,我们通过使用其差异频谱来确定$ f(x)$的回旋镖频谱,这表明$ f(x)$的回旋镖均匀性为4,如果$ p = 2 $ and $ m $是奇数,否则是2。我们的结果不仅将结果概括为[des。代码加密。 89:2627-2636,2021]和[arxiv:2203.00485,2022],但也扩展了$ x^{45} $ over $ {\ mathbb f} _ {2^8} $ in [des。代码加密。 89:2627-2636,2021]进入带有回旋镖均匀性2的无限的功率映射2。

In this paper, we study the boomerang spectrum of the power mapping $F(x)=x^{k(q-1)}$ over ${\mathbb F}_{q^2}$, where $q=p^m$, $p$ is a prime, $m$ is a positive integer and $\gcd(k,q+1)=1$. We first determine the differential spectrum of $F(x)$ and show that $F(x)$ is locally-APN. This extends a result of [IEEE Trans. Inf. Theory 57(12):8127-8137, 2011] from $(p,k)=(2,1)$ to general $(p,k)$. We then determine the boomerang spectrum of $F(x)$ by making use of its differential spectrum, which shows that the boomerang uniformity of $F(x)$ is 4 if $p=2$ and $m$ is odd and otherwise it is 2. Our results not only generalize the results in [Des. Codes Cryptogr. 89:2627-2636, 2021] and [arXiv:2203.00485, 2022] but also extend the example $x^{45}$ over ${\mathbb F}_{2^8}$ in [Des. Codes Cryptogr. 89:2627-2636, 2021] into an infinite class of power mappings with boomerang uniformity 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源