论文标题

将Monin-Obukhov的相似性理论(1954)推广到复杂的大气湍流

Generalizing Monin-Obukhov similarity theory (1954) for complex atmospheric turbulence

论文作者

Stiperski, Ivana, Calaf, Marc

论文摘要

Monin-Obukhov的相似性理论(大多数)是对大气表面湍流的理解的中心。基于以下假设:由表面通量确定的单长尺度决定了地球表面和大气之间的动量,质量和能量的湍流交换,大多数人在几乎所有大气流的数值模型中都广泛用于湍流过程的参数化。然而,它对平坦和水平均匀地形的固有局限性,水平速度方差的不缩放以及自成立以来的理论困扰着这一理论。因此,大多数的局限性及其超出预期有效性范围的使用促成了天气,气候和空气污染模型的巨大不确定性,尤其是在极地地区和复杂地形上。在这里,我们提出了大多数涵盖各种逼真的表面和流动条件的首次广义扩展。新颖的理论将有关湍流交换的方向性(Reynolds应力张量的各向异性)作为关键丢失变量的信息。标准经验中的常数大多数关系被证明是各向异性的函数,因此可以在传统大多数及其新颖的概括之间进行无缝过渡。基于从平坦到高度复杂的山区的13个著名数据集的测量结果,新的扩展关系在所有分层下都显示出对缩放的实质性改进。结果还突出了各向异性在解释复杂地形和稳定湍流的一般特征中的作用,这增加了越来越多的证据表明各向异性完全编码有关边界条件复杂性的信息。

Monin-Obukhov similarity theory (MOST) stands at the center of understanding of atmospheric surface-layer turbulence. Based on the hypothesis that a single length scale determined by surface fluxes governs the turbulent exchange of momentum, mass, and energy between the Earth's surface and the atmosphere, MOST has been widely used in parametrizations of turbulent processes in virtually all numerical models of atmospheric flows. However, its inherent limitations to flat and horizontally homogeneous terrain, the non-scaling of horizontal velocity variances, and stable turbulence have plagued the theory since its inception. Thus, the limitations of MOST, and its use beyond its intended range of validity contribute to large uncertainty in weather, climate, and air-pollution models, particularly in polar regions and over complex terrain. Here we present a first generalized extension of MOST encompassing a wide range of realistic surface and flow conditions. The novel theory incorporates information on the directionality of turbulence exchange (anisotropy of the Reynolds stress tensor) as a key missing variable. The constants in the standard empirical MOST relations are shown to be functions of anisotropy, thus allowing a seamless transition between traditional MOST and its novel generalization. The new scaling relations, based on measurements from 13 well-known datasets ranging from flat to highly complex mountainous terrain, show substantial improvements to scaling under all stratifications. The results also highlight the role of anisotropy in explaining general characteristics of complex terrain and stable turbulence, adding to the mounting evidence that anisotropy fully encodes the information on the complexity of the boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源