论文标题
来自现场相关方法的空间弦张力和非扰动的debye质量
The spatial string tension and the nonperturbative Debye mass from the Field Correlator Method
论文作者
论文摘要
空间弦张力的平方根几乎线性生长的现象$ \ sqrt {σ_s(t)} =c_σg^2 t $和debye mass $ m_d(t)$的现象既是基于字段相关方法(fcm)的理论上的,在lattice和理论上都发现了debye mass $ m_d(t)$。在后者中,字符串张力(空间和色素)表示为使用相同的字符串张力计算的两个Gluon Green功能的积分:$σ= \ int g^{(2G)}_σ$。这种关系允许检查理论的自偏见,并在高t下还允许计算$c_σ$,从而$σ_s$。我们在本文中计算相应的系数$C_σ$和$ c_d $在FCM方法中数值,并将结果与晶格数据进行比较。这证明了FCM在空间样区域的使用和在没有额外参数的高热力学中。
The phenomenon of the almost linear growth of the square root of spatial string tension $\sqrt{σ_s(T)}= c_σ g^2 T$ and of the Debye mass $m_D(T)$ was found both in lattice and in theory, based on the Field Correlator Method (FCM). In the latter the string tension (both spatial and colorelectric) is expressed as an integral of the two gluon Green's function calculated with the same string tension: $σ= \int G^{(2g)}_σ$. This relation allows to check the selfconsistency of the theory and at high T it allows also to calculate $c_σ$ and hence $σ_s$. We calculate below in the paper the corresponding coefficients $c_σ$ and $c_D$ numerically in the FCM method and compare the results with lattice data finding a good agreement. This justifies the use of the FCM in the space-like region and in high T thermodynamics without extra parameters.