论文标题

玛尼:最大化核跨域无监督分割的互信息

MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation

论文作者

Sharma, Yash, Syed, Sana, Brown, Donald E.

论文摘要

在这项工作中,我们提出了一个基于跨域核分割的基于无监督的域适应(UDA)方法。核在不同癌症类型的结构和外观上有很大差异,在接受一种癌症类型训练并在另一种癌症上进行测试时,深度学习模型的性能下降。由于核的准确分割和量化是患者诊断/预后的必不可少的组织病理学任务,并且在像素水平上对新癌症类型的核心注释核需要大量医疗专家的努力,因此这种域的转移变得更加关键。为了解决这个问题,我们最大程度地提高了标记的源癌类型数据与未标记的癌症类型数据之间的MI,以转移跨域的核分割知识。我们使用Jensen-Shanon Divergence结合,每对只需要一个负对以进行MI最大化。我们评估了多个建模框架和不同数据集的设置,其中包括20多个癌症型领域的变化,并展示了竞争性能。所有最近提出的方法包括用于改善域适应性的多个组件,而我们提出的模块很轻,可以轻松地将其纳入其他方法(实施:https://github.com/yashsharma/mani)。

In this work, we propose a mutual information (MI) based unsupervised domain adaptation (UDA) method for the cross-domain nuclei segmentation. Nuclei vary substantially in structure and appearances across different cancer types, leading to a drop in performance of deep learning models when trained on one cancer type and tested on another. This domain shift becomes even more critical as accurate segmentation and quantification of nuclei is an essential histopathology task for the diagnosis/ prognosis of patients and annotating nuclei at the pixel level for new cancer types demands extensive effort by medical experts. To address this problem, we maximize the MI between labeled source cancer type data and unlabeled target cancer type data for transferring nuclei segmentation knowledge across domains. We use the Jensen-Shanon divergence bound, requiring only one negative pair per positive pair for MI maximization. We evaluate our set-up for multiple modeling frameworks and on different datasets comprising of over 20 cancer-type domain shifts and demonstrate competitive performance. All the recently proposed approaches consist of multiple components for improving the domain adaptation, whereas our proposed module is light and can be easily incorporated into other methods (Implementation: https://github.com/YashSharma/MaNi ).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源