论文标题
Chebyshev的多项式乘数序列的均等
Parity of Polynomial Multiplier Sequences for the Chebyshev Basis
论文作者
论文摘要
我们证明,如果$ p \ in \ mathbb {r} [x] $,而$ p $不是一个偶数功能,则$ \ {p(k)\}^{\ infty} _ {k = 0} $不是第一种chebyshev polynomials的基础的乘数序列。我们还为Chebyshev提供了几何乘数序列的表征。
We demonstrate that if $p\in\mathbb{R}[x]$ and $p$ is not an even function, then $\{p(k)\}^{\infty}_{k=0}$ is not a multiplier sequence for the basis of Chebyshev polynomials of the first kind. We also give a characterization of geometric multiplier sequences for the Chebyshev basis.