论文标题

steklov eigenfunctions的通用特性

Generic properties of Steklov eigenfunctions

论文作者

Wang, Lihan

论文摘要

令$ m^n $为具有光滑边界的平滑紧凑型歧管。我们表明,对于$ \ bar {m^n} $的通用$ c^k $ metic,带有$ k> n-1 $,nonzero steklov eigenvalues很简单。此外,我们还证明了非稳定的steklov特征函数的定期值零,并且是这种通用度量的边界上的摩尔斯函数。这些结果将Uhlenbeck的Laplacians的著名结果推广到Steklov环境。

Let $M^n$ be a smooth compact manifolds with smooth boundary. We show that for a generic $C^k$ metic on $\bar{M^n}$ with $k>n-1$, the nonzero Steklov eigenvalues are simple. Moreover, we also prove that the non-constant Steklov eigenfunctions have zero as a regular value and are Morse functions on the boundary for such generic metric. These results generalize the celebrated results on Laplacians by Uhlenbeck to the Steklov setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源