论文标题
掺杂作为磁性磁性效应的调谐机制,以改善多晶NBP的ZT
Doping as a tuning mechanism for magneto-thermoelectric effects to improve zT in polycrystalline NbP
论文作者
论文摘要
Weyl半学结合了拓扑和半金属效应,使它们成为有趣有效的热电运输特性的候选者。在这里,我们介绍了有关多晶NBP的实验结果,证明了同时存在较大的Nernst效应和较大的磁性观察效应,通常在同一温度下的单个材料中观察到。我们将NBP的两个多晶样品与先前发表的工作进行了比较,观察到最大Nernst和Magneto-seebeck热力学的温度发生了变化,同时仍保持相似幅度的热力学。理论建模表明,兴奋剂如何通过转移依赖温度的化学电位来强烈改变Seebeck和Nernst Magneto-Thermopowers,并且相应的计算对我们的结果提供了一致的解释。因此,我们提供掺杂作为一种调谐机制,用于将磁性电离效应转移到适合设备应用的温度,从而在理想的工作温度下改善ZT。此外,同时存在大型Nernst和Magneto-seebeck热电器并不常见,并且如果热电器添加使用,则具有独特的设备优势。在这里,我们还提出了一种独特的热电设备,该设备将共同利用大型Nernst和Magneto-Seebeck热力学,以极大地增强常规热电设备的输出和ZT。
Weyl semimetals combine topological and semimetallic effects, making them candidates for interesting and effective thermoelectric transport properties. Here, we present experimental results on polycrystalline NbP, demonstrating the simultaneous existence of a large Nernst effect and a large magneto-Seebeck effect, which is typically not observed in a single material at the same temperature. We compare transport results from two polycrystalline samples of NbP with previously published work, observing a shift in the temperature at which the maximum Nernst and magneto-Seebeck thermopowers occur, while still maintaining thermopowers of similar magnitude. Theoretical modeling shows how doping strongly alters both the Seebeck and Nernst magneto-thermopowers by shifting the temperature-dependent chemical potential, and the corresponding calculations provide a consistent interpretation of our results. Thus, we offer doping as a tuning mechanism for shifting magneto-thermoelectric effects to temperatures appropriate for device applications, improving zT at desirable operating temperature. Furthermore, the simultaneous presence of both a large Nernst and magneto-Seebeck thermopower is uncommon and offers unique device advantages if the thermopowers are used additively. Here, we also propose a unique thermoelectric device which would collectively harness the large Nernst and magneto-Seebeck thermopowers to greatly enhance the output and zT of conventional thermoelectric devices.