论文标题
水库工程强大的量子纠缠在腔宏伟系统中
Reservoir engineering strong quantum entanglement in cavity magnomechanical systems
论文作者
论文摘要
我们构建了一个混合腔宏伟的宏伟机械系统,以转移两部分纠缠,并基于储层工程方法实现强的微波光子孔子纠缠。通过磁性偶极子相互作用将磁通模式耦合到微波腔模式,并通过磁刻度(类似光力的)与声子模式耦合。结果表明,在这两种相互作用的情况下,可以将初始的磁孔纠缠可以转移到光子 - phonon子空间。在储层工程参数状态中,初始纠缠在方向上转移到光子 - phonon子系统上,因此我们获得了一个强大的二分之一的纠缠,其中磁杆模式是有效冷却bogoliubov模式的冷储液,以在洞和机械变形模式下取下脱位。此外,随着冷储层模式与目标模式之间的耗散率增加,我们可以实现更大的量子纠缠和更好的冷却效果。我们的结果表明,稳态纠缠在温度下是可靠的。该方案可以为量子信息处理提供潜在的应用程序,并有望将其扩展到其他三模式系统。
We construct a hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon-phonon entanglement based on the reservoir engineering approach. The magnon mode is coupled to the microwave cavity mode via magnetic dipole interaction, and to the phonon mode via magnetostrictive force (optomechanical-like). It is shown that the initial magnon-phonon entanglement can be transferred to the photon-phonon subspace in the case of these two interactions cooperating. In reservoir-engineering parameter regime, the initial entanglement is directionally transferred to the photon-phonon subsystem, so we obtain a strong bipartite entanglement in which the magnon mode acts as the cold reservoir to effectively cooling the Bogoliubov mode delocalized over the cavity and the mechanical deformation mode. Moreover, as the dissipation ratio between the cold reservoir mode and the target mode increases, we can achieve greater quantum entanglement and better cooling effect. Our results indicate that the steady-state entanglement is robust against temperature. The scheme may provides potential applications for quantum information processing, and is expected to be extended to other three-mode systems.