论文标题

部分可观测时空混沌系统的无模型预测

Linear-sized minors with given edge density

论文作者

Nguyen, Tung H.

论文摘要

事实证明,对于每$ \ varepsilon> 0 $,存在$ k> 0 $,因此对于每个整数$ t \ ge2 $,每个具有至少$ kt $的图表都包含一个未成年人,带有$ t $ dertices and Edge密度,至少$ 1- \ varepsilon $。 Indeed, building on recent work of Delcourt and Postle on linear Hadwiger's conjecture, for $\varepsilon\in(0,\frac{1}{256})$ we can take $K=C\log\log(1/\varepsilon)$ where $C>0$ is a universal constant, which extends their recent $O(t\log\log t)$ bound on the chromatic number of无$ k_t $ binor的图形。

It is proved that for every $\varepsilon>0$, there exists $K>0$ such that for every integer $t\ge2$, every graph with chromatic number at least $Kt$ contains a minor with $t$ vertices and edge density at least $1-\varepsilon$. Indeed, building on recent work of Delcourt and Postle on linear Hadwiger's conjecture, for $\varepsilon\in(0,\frac{1}{256})$ we can take $K=C\log\log(1/\varepsilon)$ where $C>0$ is a universal constant, which extends their recent $O(t\log\log t)$ bound on the chromatic number of graphs with no $K_t$ minor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源