论文标题

弹道宏观波动理论

Ballistic macroscopic fluctuation theory

论文作者

Doyon, Benjamin, Perfetto, Gabriele, Sasamoto, Tomohiro, Yoshimura, Takato

论文摘要

我们介绍了一个新的通用框架,描述了量子和时空的流体动力学尺度上的量子和经典多体系统的波动和相关性。该框架使传统宏观波动理论(MFT)的思想适应了支持弹道传输的系统。由此产生的“弹道MFT”(BMFT)仅基于多体系统的Euler流体动力学数据。在此框架内,介质可观察物仅取决于波动的保守密度,并且通过确定性地通过Euler流体动力学运输热力学波动来获得Euler尺度的波动。使用BMFT,我们表明,空间中的远距离相关性从相互作用模型中的长波长不均匀初始状态开始逐渐发展。我们通过数值计算验证的结果挑战了长期以来的范式,即在Euler量表上,流体细胞可能被认为是不相关的。我们还表明,非平衡弹道传输的Gallavotti-Cohen波动定理纯粹来自Euler流体动力学的时间反转不变性。我们通过将BMFT应用于可集成的系统,尤其是硬杆气,并通过广泛的模拟来检查BMFT的有效性,以证实我们的分析结果。

We introduce a new universal framework describing fluctuations and correlations in quantum and classical many-body systems, at the Euler hydrodynamic scale of space and time. The framework adapts the ideas of the conventional macroscopic fluctuation theory (MFT) to systems that support ballistic transport. The resulting "ballistic MFT" (BMFT) is solely based on the Euler hydrodynamics data of the many-body system. Within this framework, mesoscopic observables are classical random variables depending only on the fluctuating conserved densities, and Euler-scale fluctuations are obtained by deterministically transporting thermodynamic fluctuations via the Euler hydrodynamics. Using the BMFT, we show that long-range correlations in space generically develop over time from long-wavelength inhomogeneous initial states in interacting models. This result, which we verify by numerical calculations, challenges the long-held paradigm that at the Euler scale, fluid cells may be considered uncorrelated. We also show that the Gallavotti-Cohen fluctuation theorem for non-equilibrium ballistic transport follows purely from time-reversal invariance of the Euler hydrodynamics. We check the validity of the BMFT by applying it to integrable systems, and in particular the hard-rod gas, with extensive simulations that confirm our analytical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源