论文标题

通过本体感受和触觉感应,学习可变阻抗控制在不平坦的异质表面上的空中滑动

Learning Variable Impedance Control for Aerial Sliding on Uneven Heterogeneous Surfaces by Proprioceptive and Tactile Sensing

论文作者

Zhang, Weixuan, Ott, Lionel, Tognon, Marco, Siegwart, Roland

论文摘要

能够与环境进行物理相互作用的新型航空车的最新发展导致了新的应用,例如基于接触的检查。这些任务要求机器人系统将力与部分知名的环境交换,这可能包含不确定性,包括未知的空间变化摩擦特性和表面几何形状的不连续变化。寻找对这些环境不确定性的控制策略仍然是一个公开的挑战。本文为航空滑动任务提供了基于学习的自适应控制策略。特别是,基于当前控制信号,本体感受测量和触觉感测的策略,对标准阻抗控制器的收益进行了实时调整。在学生教师学习设置中,该政策通过简化执行器动态进行了模拟培训。使用倾斜臂全向飞行车辆验证了所提出方法的现实性能。所提出的控制器结构结合了数据驱动和基于模型的控制方法,使我们的方法能够直接转移并不从模拟转移到真实平台。与微调状态相互作用控制方法相比,我们达到了减少的跟踪误差和改善的干扰排斥。

The recent development of novel aerial vehicles capable of physically interacting with the environment leads to new applications such as contact-based inspection. These tasks require the robotic system to exchange forces with partially-known environments, which may contain uncertainties including unknown spatially-varying friction properties and discontinuous variations of the surface geometry. Finding a control strategy that is robust against these environmental uncertainties remains an open challenge. This paper presents a learning-based adaptive control strategy for aerial sliding tasks. In particular, the gains of a standard impedance controller are adjusted in real-time by a policy based on the current control signals, proprioceptive measurements, and tactile sensing. This policy is trained in simulation with simplified actuator dynamics in a student-teacher learning setup. The real-world performance of the proposed approach is verified using a tilt-arm omnidirectional flying vehicle. The proposed controller structure combines data-driven and model-based control methods, enabling our approach to successfully transfer directly and without adaptation from simulation to the real platform. Compared to fine-tuned state of the art interaction control methods we achieve reduced tracking error and improved disturbance rejection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源